Colorado Deliveries at Lobatos

Strategy:

- On a monthly basis, deliver based on expected end of year compact obligations.
- Winter (Nov March) index flows increased (gaining) or decreased (losing) based on historical average behavior.
- Summer: For both Conejos and RG:
 - 1. Predict total & remaining annual flow = Q_t & Q_r
 - 2. Predict total & remaining annual delivery obligation = O_t & O_r
 - 3. Predict deliveries in November & December = W
 - 4. Set monthly compact delivery % as remaining obligation less expected November and December deliveries all divided by remaining obligation: $C\% = (O_r W)/Q_r$
 - 5. Limit month to month change in C% to 5% per month
- Overall goal is to have curtailed % of flow be constant through irrigation season and meet delivery obligations perfectly to end the year

Setting up the problem

Calculate average winter delivery as % of supply

Setting up the problem

Calculate average % supply by month

Calculating deliveries

Simulated Compact Balance for Climate Change Runs

Method overshoots a little with climate change hydrographs because they are shifted to earlier runoff making model think total flow is going to be bigger than it ends up being.

Simulated Change in San Luis Valley Consumption

Simulated Compact Balance for Climate Change Runs

Future possible improvements

- Currently using gaged flows at index gages rather than actual index flows.
- No max diversion or min thruflow (base flow) currently included.
- No prediction based on snowpack
- Every year predicted to have same hydrograph shape